Super-Resolution multi-focus image fusion based on convolutional neural network
نویسندگان
چکیده
منابع مشابه
Single Image Super-Resolution Using Multi-Scale Convolutional Neural Network
Methods based on convolutional neural network (CNN) have demonstrated tremendous improvements on single image super-resolution. However, the previous methods mainly restore images from one single area in the low resolution (LR) input, which limits the flexibility of models to infer various scales of details for high resolution (HR) output. Moreover, most of them train a specific model for each ...
متن کاملMulti-input Cardiac Image Super-Resolution Using Convolutional Neural Networks
3D cardiac MR imaging enables accurate analysis of cardiac morphology and physiology. However, due to the requirements for long acquisition and breath-hold, the clinical routine is still dominated by multi-slice 2D imaging, which hamper the visualization of anatomy and quantitative measurements as relatively thick slices are acquired. As a solution, we propose a novel image super-resolution (SR...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملMedical Image Segmentation Based on Multi-Modal Convolutional Neural Network: Study on Image Fusion Schemes
Image analysis using more than one modality (i.e. multi-modal) has been increasingly applied in the field of biomedical imaging. One of the challenges in performing the multimodal analysis is that there exist multiple schemes for fusing the information from different modalities, where such schemes are application-dependent and lack a unified framework to guide their designs. In this work we fir...
متن کاملAccelerating the Super-Resolution Convolutional Neural Network
As a successful deep model applied in image super-resolution (SR), the Super-Resolution Convolutional Neural Network (SRCNN) [1, 2] has demonstrated superior performance to the previous hand-crafted models either in speed and restoration quality. However, the high computational cost still hinders it from practical usage that demands real-time performance (24 fps). In this paper, we aim at accel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1885/2/022011